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ABSTRACT lI

We present conditions under which a point process of certain jump

times of a Markov process is a Poisson process. One result is that if

the Markov process is stationary and the compensator of the point process

in reverse time has a constant intensity a. then the point process is

Poisson with rate a. A classical example is that the output flow from a

M/M/1 queueing system is Poisson. We also present similar Poisson

characterizations of more general marked point process functionals of a

Markov process. These results yield easy-to-use criteria for a

collection of such processes to be multi-variate Poisson or marked

Poisson with a specified dependence or independence. We give several

applications to queueing systems, and indicate how our results extend to

functionals of non-Markovian processes.
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1. Introduction

There are a variety of point processes associated with the jump

times of a Markov process. For instance, in a Markovian network of

queues, one might be interested in the point process of times at which

units move between two sectors of the network. More generally, if the

network has synchronous movements of items, one might be interested in

the marked point process of the times at which batches of units move

between two sectors anrd the numbers of units in the batches (the batch

size being the "nrk" of the time of the movement). One can formulate

such a point process as a functional of the Markov process represent ing

the network. The typical aim is to describe the behavior of the point

process in terms of the characteristic of the Markov process. Some

immediate questions in this regard are: Is such a point process Poisson

(or marked Poisson)? Is a collection of these point processes

multi-variate Poisson (or mnurked Poisson); and what are the dependencies,

if any. among them?

These are the issues this study addresses. We begin in Section 2 by

presenting conditions under which a point process of certain jump times

of a Markov process is a Poisson process. It is well Ioiown that a simple K

point process on the real line is Poisson with rate a if its compensator

has the constant intensity a (Theorem 2.3(i)). We present a reverse-time

version of this (Theorem 2.3(ii)). It says that if the Markov process is

stationary and the compensator of the poini process in reverse time has

the constant intensity a. then the point process is Poisson with rate a.

%A



2

This is an easy-to-use criterion for establishing whether a point process M. V

of jump times is Poisson. We also give necessary conditions for this 0

Poissonness. In Section 3. we present similar conditions under which

more general functionals of a pure jump Markov process are marked Poisson

processes. Some of our results overlap those of Melamed (1979), Br6maud 0-

(19S). Variaya and Walrand (1981). and Disney and Kiessler (1987).

Melamed and Disney and Kiessler derive their results using a Markov .

renewal argument and BrCmud. Variaya and Walrand use a filtering •

argument. We use a simpler approach based on the notion of the time

reversibility of the compensator of a point process. This approach lays 4"

bare the characteristics underlying the Poisson property, and it readily

extends to the more general settings in Sections 3-.

The applications in this area have been primarily for queueing

systems. Burke (19 6) and Reich (19.;i) showed thavt, in a stationary

M/M/J queueing system, Ihe output flow is a Poisson process with the same

rate as the Poisson input flow. Similarly, the exit flows from the

queues in a Jackson network are independent Poisson processes; this is

discussed in the references in the precedin paragraphs and in Kelly

(19"M). Disney and K6nig (1985) and Whittle (1986). In Sections 2-4. we

discuss applications identifying Poisson, compound Poisson and

multivariate-Poisson flows in single queues anld in queueing networks with

dependent nodes. We end in Sect ion f) by i ndica i ug how our results

extend to Ka rkov processes with general stale spaces and to fuvc tionlaIs

of semi-Markovian processes.

S
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2. Jump Times of a *arkov Process thatL Form a Poisson Process

Let X = {XL: t C R) be a Markov process with a countable state space

I and transition rates

q(x~y) = lim P{X, y I = x}. ;e y.
t o Ix

and q(x.x) = 0. We indicate later how our- results extend to a general

state space. We adopt the standard assumption that

q(x):= I q(x.y) < -.2 x C .,

y

.1and that each sample path oF* X is right continuous arid has a finite

number of jumps in any F'inite time period. Then the sojourn time of X in

a state x is exponential with mean q(x)- and. at the end of the sojourn.

X jumps to some state y with probability q(x.y)/q(x). yE:7. For

convenience. we assume (that X is irreducible.

We shall Study the point process N Ohi R defined by

(2.1) N(A) = :E f(X .X)
tCA t-

where A is a Borel set in R~ and f: I x 1 0, 1 w itIh 1(x. x) = 0. x C J.

The N(A) is the number of' jumps of X from some x to some y for which

1'(x.y) = I in the time period A. Any such f is ani indicator funct ion

f'(x.y) = 1((x,y) C S) of' a subset S of I7 x I1 that( does niot Contain pails

of' ident icalI values-. the N (A) would then be hti number of' transit ionis of'

X in thle period A that take place in (the transit ion set S. Clearly N(A)

is f inilte when) A is bounded and it may be inf iit e when A is unbounded.

We shall Ifrequent ly use the funiction

(2.2) a(x) = >. q(xy)f(x~y). x C t

* y

First note thait tile mean measure of N is

N, N N
91~~ %%~ %( %A P''Sp , S%% ~% % %
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(2.3) EN(A) A LAEa(Xt)dt

which is Levy's formula (see for instance Benveniste and Jacod (1973)). I

When X is stationary. an easy check shows that N is stationary (i.e. for

any A 1 -- A n . the distribution of N(AI+t)..... N(An+t) is independent of

t). Consequently, EN(s.t] = a(t-s). s ( t in R, where

(2.4) a = EN(O.1] = 2 w(x)q(x.y)f(x.y)
x.y

and wt(x) = P{X =x} is the equilibrium (or stationary) distribution of X.
L

Here 0 < a ( -. Also. with probability one, tI N(s.s+t] -# a as t .

One can use N to model a variety of event occurrences of X by

appropriate selections of f. For instance, suppose X takes values in

= Z M . the m-dimensional vectors with nonnegative integer-valued -
+'

entries. Then N records the downward jumps of X when f(xy) = 1 iff

x X y and x. > Y.. j=l.....m. Similarly, N records the jumps of X at
i J,

which the imximum component does not change when f(xy) = I iff x x y and

MIX x = max y, -

j V .

We shall investigate conditions under which N is a Poisson process.

We say that the future of N is independent of the past of X, denoted

N +1 X_ . if (N(A): A C [t.-)} is independent of (X :u < t), t E R. 4.

(X : u < t) ca be replaced simply by X since X is Markovian).
uI L

Similarly. N_ 11 X denotes that the [st of N is independent of the I
+

future of X. O r first result is that these conditions are sufficient

for N to be a Poisson process, the N might be a non-stationary Poisson

process. We write "N is (a)" to mean that N is a stationary -,

.

%'



(time-homogeneous) Poisson process with rate a. The degenerate case a =

0 corresponds to N = 0; the case a = is not possible.

Theorem 2.1. If N+ 1L X, or N_ IL X+ then N is a Poisson process. In

this case, N is ,0(a) if and only if Ea(Xt) = a, t E R.

Proof. The N is a Poisson process if it is simple (i.e.. N({t)) = 0 or

I. t C R), it has no fixed atoms and has independent increments (i.e..

N(A I),.....N(An) are independent for disjoint A ..... An ); see p. 58 of

Kallenberg (1983). Since the probability is zero that X has a jump at

any specified time. it follows that N is simple with no fixed atoms. Now

suppose N X_. Then, for any s < t in R.

PJN(s.t] = r) N(A) : A C (--,s])

E[PIN(st] = n X r < s}] = P(N(s,t] = n}.
r  - 6

Thus N has independent increments and hence N is Poisson. This

conclusion also follows when N_ X since

P{N(s, t ] = ni N(A) : A C [t w))

= F[PIN(s.t] = n I X u > t}] = P(N(s.t] = n}.
u

The second assertion on the stationarity of N follows from (2.3).0

Remark 2.2. From the proof, it is clear that the first assertion of

Theorem 2.1 is true for any pure jump stochastic process X. the Markovian

property is used only for the second assertion. Also, both assertions

are true when X is a Markov process that is not time homogeneotis (its

transition rates are time dependent). Melamed (19'19) showed that N +I1. X_+,,

implies that N is Poisson; his argument relies on the property that X and

((N(s,t]. Xt): t > s} are Markovian.
Alt
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We now discuss conditions oh the parameters of the Markov process X

under which N is It(a). When X is stationary with equilibrium

distribution v. we shall frequently use the function
9*-1

(2.5) a (x) = W(x) I wr(y)q(y.x)f(yx). x C it.

y

Theorem 2.3. (i) If a(x) = a. x C J. then N + X- and N is P(a). (ii)

If X is statiorry with equilibrium distribution r. iu(d a9 (x) = a. x C

then N- . X and N is P(a).

Proof. Assertion (i) is a special case of Theorem 18.9 in l.iptser and

Shiryayev (19"8) (or Theorem T in ilrriud (1981)). which says that a

simple point process on R is !P(a) if its tompensntor has the non-rndom

intensity a. In our settint. for each s C R, the process

(2.(6) M = N(s.s + - fst (r(X )du

is an *g -martingale, where 4 = o(X: s < u < s + 1); the process
tt U -) ?

At = f S+ a(X )du is the compensator of N(s. s + t| and (r(X is thes
intensity of this compensator.

To prove assert ion (ii). conisider the process X = X t C R. wheret -t',

XI = X . The X is the right-coitintious time-reversal of X. Each I
t t-

sample path of X is the saume as a sunple xith of' X traversed in the

opposite direction, and vice versa. Since X is stationary, it follows

that X is an irreducible, stationary Markov process and its transition

rates are

%

q9 (x,y) = r V(y)q(y.x). x~y C :1.

,kWfine the point process N on I by

N (A) : ' * (X9  X )

t(A t t .5

where f9*(x.y) = f(y.x), x.y C A. Clearly N (A) N(-A). for each A. and,

V-
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so N is tie time-reversal of N. Consequently, N is t(a) if ard only if .

N is It(a).

Now observe that a*(x) = )E q (x.y)f ,xy). That is, a is the

y
function a for the processes X N Then an application of (i) to X*.N* '

says that N+ -IL X_ arid N is d'a.But these stalemerits are eqivalent to

the respective statements that N_-I X+ arid N is PJ(a). since X , N are

the time reversals ofe XNN.l

Nroist ofMro roesst(tNia).a)i ieinest (X)o '

Remark-%. (1) In Theorem 2.3. statement (i) is the well-known

owt observ thacsse that) N is q* Pf(a~). that ines ay is theofN

compensator equals (he consyart a. Stement (ii) is simply a reversed

time version or (i): it is (i) in terms of X and N viewed in reverset 9

time. he a ois the reversed Iime version ofn a in the sense that ( t

is the intensity of tie cotpanstor of N in reverse time. Also. N U X+re

in (ii) is the time reversal of N+I(

process X in (i) roay be transien , recurrent or non-statiory but i n

ii X must be stat ioary. (3) In consuInt ii i the references for

t1]imorem 2.3(i oe i can see I it this restIt is true for a non-Markovian

process X for which re: ve R+ is a function such ttin the process M t in

t s
in(i) is the Ytmerevnsal. f Nilrly in (fo.(2)wt that therm2.(i)i

true for a rion-Markoviwi process X if it J : m+ b s t i frre I n ionry: ch ha

for each sf R,

M N[s-t s) -*( s lu)du
Mt s-t k

is an -mrtintle where i = (X s- < ii < s) r for

Thoe 2 (i).nernset thi reuti ru o onMro a
tS

% %
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In applications, the Poisson property of N due to u(x) = a. x C ,.

is usually foreseen, while the Poisson property of N due to a (x) a. x

C It. might not be anticipxated. Here is an example.

E-xa ple 2.4. N/N/! and I1atch Service Queues. Suppose the Markov process

X has the state space Z and transition rates

q(n.n + I) = X n Z +.
+

q(n.n - K) = [ I K>

q(n.O) = n ( < K

where A. p and K are positive. This process represents the number of

customers in a queuein.g system in which customeis arrive singly at the

rate X and are served in batches such that when n > K customers are in S

the system, then batches of K customers dvIxtrit at the rate i: and when

n < K customers are presen t Then all of the customers depart at tile rate

11. When K = 1. this is the M/M/1 queneitng system. 5

Implicit in the description of this (lueueing system, the point %

process N of customer arrivals is P(N). regardless of whether X is N.

Transiernt or recurrent. Indeed. this follows from Theorem 2.3 (i) since

N is dlI i tied by (2.1) w ilI) f(u.n ') I il it' = n + I and

(,(n) = > q(n.t')f(,.n') ql(nj + I) = X.

Now. suppose that N denotes the point process of times at which S

1xitclhes of size K depirt from the system. TIIi s is def ied by (2. 1) wit III-

f(ni.n) = I iff it = n - K and xi / K. In ihis case.

,(,n) = d(,,., - K)l(ui > K) = jil(, > K).

This depends onl n. and so Theorem 2.A (i) does not ensure thit N is

Poisson. However. assume that X is stntiontry. Neces.arily. A < IiK and

the equilibrium distribution of X is

5.~ -" Vm~5.. %%5 %''%

%" %"%.' _ ..,''./..'. ',.,.i,..',',..', ,..,'...--..> ... . , ,,,.,,..,..,.,., .... ,.,, % .%,,,. , ,.,, , ,.,.N.-,,,,.- , ..N
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.4'
r(n) = rn(l - r). n > 0.

where r E (0.1) is the unique root of
K+ I

pr - (X + p)r + X = 0

(see Section 3.2 of Gross and Harris (19&3)). Clearly

a (n) = r(n)- 1 I I (n' )q(n'.n)f(n' n)
n

7 ir(n) - I (n + K)q(n + K.n)

K
=ir = i+(l - l/r).

Thus. we conclude by Theorem 2.3 (ii) that the process N is

P(p + X(1I - l/r)). One would probably not anticipate this result from

the description of the process, or even from earlier work in this area.

For the special case in which X is the M/M/I queue, we have K = 1.

r = X/p. and so N. which is the depxirture process, is :P(A). Burke (1956)

and Reich (Y7) were the First ones to prove this. .

Example 2.5. Queues With Compound Poisson Arrivals and Poisson

Departures. Suppose the Markov process has the state space Z+ and ,

transition rates

q(n. n + m) = A n pm-l( - p) m > 1. nCZ+

q(n, n- 1) = p n  n > I

where Xkn . 1 are positive and 0 < p ( 1. This process represents the
n- n

number of customers in a queueing system in which batches of customers

arrive at the rate X when n customers are present and the number of'
n

customers in a batch has a geometric distribution with parameter p. The

customers depart at the rate pn when n are in the system. The
nI

equilibrium distribution of X is '.

-1 n-I .

/ (n) =w(()),\ 0 (N k + pf1). >,
k=l

%

,% %'
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provided the sum of these terms over n is finite, which we assume is true

(see Kook (196S)).

Suppose that N is the point process of customer departures. This is
,V

defined by (2.1) with f(n,n') = I iff n' = n - 1. Clearly.

a*(0) = w(O)- Ir()q(l.0) = X0

a*(n) = w(n)- I(n + 1)q(n + l.n) = Xn + Pl n. n > I.

Thus, if X is stationary and X = a and X + pp = a. i > 1 then the
0 n 1

departure process N is ,e(a).

We end this section with elaborations on Theorem 2.3 that establish

necessary conditions for N to be Poisson.

Theorem 2.6. When X is recurrent, the following statements are

equivalent.

(i) N IL X_ and N is P(a).

(ii) a(x) = a, x E J.

(iii) N +-L X_ and EN(st] = a(t-s). s < t in R.

(iv) E[(a(Xt) I X = x] = a, x C IT, s < t in R.

Proof. Theorem 2.3 ensures that (ii) implies (i). Clearly (i) implies
I

(iii). Now, if (iii) holds, then, for s < t in R,

a(t-s) EN(st] = E[N(s.t] I Xs = x]

t/ E[a(X) Xs=x]du

the last equality being Lvy's formula. Taking the derivative of this

with respect to t yields (iv). Finally, if equation (iv) holds, then

taking the derivative of it with respect to t and lettin t1 s, we
5

obta in

U a(y)q(x.y)/q(x) (r(X) for each x.

y %

%Y%

!S

" e-.%

ee+.'',;..,.'.. .'.;..'.-..,. .-... :, -.-. .-. ., .;. . .. . . . , ._.. , ,, ., .. . . . .,. . . . . . . . . . . ., ,.%,,
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This says that a is a harmonic function of the Markov nmitrix

{q(x,y)/q(x)). Now. this matrix is recurrent under the assumption that X

is recurrent. But we know (see for instance Section 7.2 of Cinlar

(19Y5)) that harmonic functions of irreducible. recurrent Markov chains

are constant. This observation and equation (iv) imply (ii).O

Theorem 2.7. When X is stationary with equilibrium distribution ir. the

following statements are equivalent.

(i) N_ 1 X and N is !P(a).+

(ii) a*(x) = a. xE A.

(iii) N_ 1LX and EN(O.] = a.

(iv) E[(X) I Xt = x] = a. x E , s < t in R.

(v) a*(x) = a(y)w(y) = a. x E 1.

y
Proof. The equivalence of (i) - (iv) follows from Theorem 2.6 applied to

the reversed-time processes N* , X* defined in the proof of Theorem 2.3.

Furthermore, (v) obviously implies (ii). And (ii) implies (v) since N is

,P(a) by (i) and by (2.1). we have

a = EN(O,] = fl Ea(Xt)dt = ) ((y)7r(y).
0 t y

Thus (i) - (v) are equivalent statements.r

Remirk 2.8. Statement (v), relating (w to t. is the "independence

condition" that is the focus of Melamed ( 9"19) Br -mjd (l961) and

Varaiya and Walrand (191 ). Their main result, which is implicit in

Theorem 2.7. is as follows: If X is stationary with equilibrium

distribution w, then N_ IL X if amd only if a (x) = , a( )w(y). x C :.
+

y

In this case, N is P(a) where a is the preceding sum.

., 1%

a~ %,

*~~L %S * :.:; tP'%a ' P. .a9 ~ :.
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Although we are considering processes N and X defined on the entire

real line. our results herein also apply to such processes defined on any

time interval I in R. Indeed, consider the process extended to all of R

and then the results apply to these extended processes and hence to their

restrictions to I.

3. General Poisson Functionals of Farkov Processes

We have been studying the point process N that records the times at

which the Markov process X jumps from some x to some y with f(x.y) = 1.

We shall now study a more general point process that records additional

information at these jumps. Suppose that h1 is a function from A x I to

some space Vi. Consider the rmrked point process M on R x A1' defined by

(3.1) M(AxB) = f(X t.Xt )l(h(X t.X ) tC B)
tCA

where f is as above. A x B is in the o-field of R x V' and I(- E B) is

the indicator function of B. This M is a functional of X that records

the "mark" h(X .X t) at each jump time t of X at which f(X tXt) = 1. As

a point process. M is simple and M((t) x It) = 0 or 1. t C R. Also.

M(A x V) = N(A) records the times at which M records the marks. F

In this section. we identify conditions on X under which M is

Poisson with EM((s.t] x B) = a(i-s)F(B). where a > 0 and F is a 4

probability measure on V. In this case, the process N of occurrence

times of the marks of M, is 11(a). and each rmark has the distribution F.

We call such an M a rarked Poisson process with rate a and mark

distribution F. anid we simply say M is .,t(a.F1.

%* U
JWI



13

The approach we used in Section 2 for deriving Poisson characteri-

zations of N readily extends to yield mrked Poisson characterizations of'

M. The following results are analogues of Theorems 2.1. 2.3 and 2.7; the

analogue of Theorem 2.6 can be seen from Theorem 3.3 and hence is not

displayed. Their proofs are omitted since they follow the same line of

reasoning as their counterparts in Section 2. Here we let

cr(x.B) I q(x.y)f(x.y)l(hi(x~y) C B)
y
-I

a (x.B) = i(x) 7 r(y)q(y.x)f(y.x)1(h(y.x) C B).
y

Theorem :3. 1. If M + X o r N... '- X + then M is a Poisson process. In

this case. M is .AP(a.F) if and only it' La(X t, 1) = aF(B). for each tand

13.

Theorem 3.2. (i) If u(x.B) = aF(B). for eacti x arid 11. then M I X_. anid

M is 4a.) (ii) If a (x, B) z F"(B). for eacti x arid B. then M_ 1 .X

and M is AM'(a.1.).

Theorem 3.3. When X is stationary with equilibrium distribution 7r. then

the following statements are equivalent.

*(i ) M_ 1L X arid M i s AP(a. F).

(ii) ar(x.B) = aF(B). for each x and 11.

(iii) M_. IL X +and EM ((0,.1] x 1B) = aF"(B) for eaich x uid 11.

(iv) E[a *(X.sB) jXt=x] = a'(11) . for- each x, It arid s <( in R.

(v) a (X,11) = r (Y.B)7r(y) = aF(B). for each X and It.

y

Point processes of the form (23. 1) are usefti for representing

mul tivariate and compou~tnd point processes. Indeed, suppose one is

interested in the r-dimensiornil compound point process (M A.

defined by



(3.2) M.(A) =2 f(Xt- X t)h.(X t-X )
LEA 3t

where h.: 1 x I - R (or any other group). These processes contain the.3

same informaition as M defined in (3.1) with V = Rn and

h(xy) = (hI(xy).....hn(x.y)). More precisely, there is a one-to-one

correspondence between point processes M on R x Rn as in (3.1) and

n-dimensional compound point processes (M . Mn) as in (3.2). Note

that M on R x Rn is .W(aF) if and only if its corresponding (M ..... M )

is an n-dimensional compound Poisson process with rate a and atom
Rn

distribution F on R. In this case,

P{M1 (S.t] C B1 . . M (s.t] E B }n

- E F'1(Bx. .. xB )k(t - S )k -a(t-S)/k!.
k=O

And each M. is a compound Poisson process with rate a. = a(l-F.(O)) and

atom distribution F., where FI..... F are the marginal distributions of.1 n

F. Here are some special cases:

Cl: M ... Mn are independent compound Poisson processes with rates

a I - a and atom distributions F - F if and only if F = FI x... xl'n1 "' n I. n"

C2: (M..... M ) is an n-dimensional Poisson process with rate a and

point allocation distribution F on {0,1}n if and only if F has support on
d

O~l~ n . In this case, each M. is ,P(a.).

MJ3: M MN are independent Poisson processes with rates a ,.a if

and only if F has support on (e1 1- en. ), where e. is the jth unit vector
with 1 in entry j and O's elsewhere.

Remark 3.4. Each of the preceding theorems hold for these cases Cl, C2.

C3 when the F in the theorem is as specified in the case of interest.

For instance, Theorem 3.2(ii) for case C3 reads: If' a(x,e }) = aj,

%3.
%I



j=l.....m. and a*(x.(z}) = 0 otherwise. x E A. then (M ..... M )_ X and

M ..... Mn are independent Poisson processes with respective rates

a ..... an

An obvious application of Theorem 3.2(i) shows that the process of

customer arrivals in Example 2.5. when X = X, is a compound Poissonn
rn-i

following is an example of a not so obvious compound Poisson flow in a

queueing process.

Example 3.5. A Batch-Service Queueing System With Poisson Arrivals and

Compound Poisson Departures. Suppose the Markov process has the state

space Z and transition rates+

q(0.l) = A(1 - p), q(n.n + I) = ?. n > .

m-I
q(n.n - m) = gp (1 - p) I < m < n, n > 1.

n-I1.'
q(n.0) = lp n > 1.

where X.1i are positive and 0 < p < 1. This process represents the number

of customers in a queueing system in which customers arrive at the rate X

and are served in batches as follows. When there are customers in the

system. "buses" arrive at a rate p to take them immediately from the

queue. Busing is a common practice in computer systems and material

handling systems. The number of customers each bus can take is a random
rn-l

variable with the geometric distribution p (1-p). m > 1. Also, when

there are no customers in the queue and a customer arrives, then with

probability p there is a bus available to take the customer without

delay. The equilibrium distribution of' X is

9n
T(n) = 7r(O)(l-p)\n/(Ij + pX) n ,  n > I.

provided X < + pX. which we assume is true (see Kook ( 19,N)

% % N.

% .. . -a a



16

Consider the compound point process %

D(A) = I max{O. X -X } 
tCA t t-

that describes the total number of departures in the time period A. It

records the times at which batches of customers depart and the batch

sizes as well. This process corresponds to M in (3.1) with f(n.n') = I

iff n' g n and
fn - n' n' < n

h(n.n') =
LO n' > n .

Clearly, for each n > 0 and m > 1.

a (n.{m)) = r(n)- 1 2r(n')q(n .n)f(n'.n)l(h(n' n) m)
n

-1-
= 1r(n) -(n + m)q(n + mn) S

= X(l - p)F({m}).

where F({m)) rM (1-r), m > 1. and r = pX/(p+pX). Thus, if X is

stationary, then Theorem 3.2(ii) implies that M is AI(X(l - p).F). Hence

D is a compound process with rate X(1 - p) and geometric atom

distribution F.

4. Poisson Flows in a Network of Queues

We shall consider a queueing network process defined as follows.

Suppose that X(t) = (Xl(t)-..Xm(t)). t C R. is a queucing network

process on m nodes, where X.(t) denotes the number of units (i.e.

customers) at node .j at time t. The process X takes on values

n = (n n) in Zm . let e. denote ihe ith unit vector in Zm with I in
m +J +

entry j and O's elsewhere. As in Whittle (1946). we assume that units

move among the m nodes such that X is a Markov process with transition

rates S

% %'

N Vj -d
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(.)q(n, n + e k) =_A~

q(n~n - e.i + e k) = Aik 4(n - e.i)/(ni), n . > I.

q(n.n - e 0A o (n - e .)/O(n), n. > l*1

and q(n.n') = 0 for allI other states n'. Hfere (P: 7M- (0.-). the A's are

nonnegative, and the subscript, 0 denotes the "outside" node. Under this

assumption. units enter the nodes 1..m by independent. Poisson

processes with respective rates A oil*-.A O. When X is in state n. then

2 X jk( n-e i)/O(n) is the departure rate of units from node j. The X .
k j

is the "arc-dependent" routing intensity from node j to node k. and

0)(n-e .)/O(n) is the "system-dependent" departure intensity from node j

(the ratio representing the potential difference between the system in

state n and in state n-c. with one less customer at node j).

We shall assume that X is irreducible. This is equivalent to the

irreducibility of the ?arkov routing matrix

m
(4.2) p(j.k) = X. /k A j.. *J~k = 0...m.

where A 00= 0. The irreducibility of this matrix is equivalent to the

existence of unique positive numbers w 1- w mthat saitisfy

mm

(4.1) >' ( w.A. - wA k. 0. j=0 m

m n.
where w -=1. We also assume that 4 )(n) TT w. i s f in it e. Then X i S

0 n j=l '

po~sitive recurrent and has the equilibrium distribution (p.19% of Whittle

m 11.
%(4.4) w(n) =CO(n) 17 w. II C Z

j=l +

where c is the normilizing constant. Hereaf ter, we assume that X is

stat ionary.

% % % % %I
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Now, consider the point process

N.o(A) = I l(X(t) X(t-) - e )
teA

that represents the times at which units exit the network from node j.

Of course. NjO = 0 when XjO = 0.

Theorem 4.1. The exit processes N ...... N are independent Poisson

processes with rates w X A 111mO and (No .... Nmo)- IL X+

Whittle (1986) on p. 207 proved this by establishing that the

reverse time process X of X is again a queueing network process and the 3

exit processes of X are just the time reversals of the Poisson input

processes of X . Theorem 4.1 also follows from Theorem 3.2(ii) and

Remark 3.4 since, for each n and j.
"(1.-

a (n.{e.}) = 7(n) -(n + e.)q(n + ej.n) = w X
and a (n.(z)) = 0 elsewhere.

Along with these exit processes, consider the point processes 9

Njk(A) = l(X(t) = X(t-) - e. + ek)
tfA

of times at which units move from node j to node k. We shall now

identify sets J C {1...m) and K C (0,1.....m} such that Njk. jcj. kfK

are independent Poisson processes. Suppose that J and K satisfy the

following assumptions:

Al: Each unit that exits J can never return to J. (To verify this one S

need only check the possible routing under Ak.)
jk-

A2: The system-dependent delxrture inlensity for each n ode j j is of' the 'I.-

form S.

0(n - e)/O(n) = 41 (n - )/1j(. )

where n1 = (n. : jLJ). and 0 is a positive function on such vectors.

VIN
N. N.% N,

% % % % % % % % % %-
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A3: K is the largest subset of {01.....m) such that each unit in K

cannot enter J on a subsequent move. (Note that 0 E K and

J n K= (j E J: Xj = 0. P E J).

For some networks, J = (1.m} may be the only set of nodes that

satisfies Al. At the other extreme are networks in which each node is

visited at most once by a unit, and so each subset of nodes satisfies Al.

Assumption A2 is equivalent to being able to factor P as

P(n) = J (nJ)*I(nk : kqJ). Upon selecting J conforming to Al, A2. it is

advantageous to select K as large as possible as we did in A3.

let X Jt) {X.(t.): j.}, t R, denote the process X on the nodes J

and let A . denote its state space.

Theorem 4.2. The processes Nik. jit, kEK. are independent Poisson

processes with respective rates wjXjk, jt.. k(K. Furthermore,

(N jk: jej, kcK _ 1L. (X j)+.

Proof. Under the assumptions, the X is a queueing network process on

the nodes J with transition rates qj(n.n') defined as in (4.1) with the

last line replaced by

qj(n.n - e) = 0(n - c)/,,t(n), n . 1 n(:
J .1 .-J , , )

where A. = X jk" Fur(hermorc. X has the equilibrium distribution
J kcK jl&

n.
V (i) = cj j(n) T' (..:1 n j.

.,j-J J

This is just the sum of w(n) in (4.4) over all n P, MJ. Thus. from

Thbeorem 4. 1. we know that X 's exit processes N. = N jiJ. areJ kLK ' ik

independent Poisson processes with respctive rates w.A.. jc.]. and that
i
JJJ ,+,

(N j, jf-J)_ .IL (X.)+.
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Next, observe that for each j - J. the processes Njk. k c K. form a e

partition of N. in which each point of N. is assigned to the subprocess

N ikwith probability X. Ik A iindependent of everything else. Contse-
jk j

quently, Nik. k c K, are independent Poisson processes with respective

rates (A.k/Aj) (w.A.) = wA.. kLK (see for instance p.89 of Cinlar

(1975)). This property and the preceding argument yield the assertions.n

Example 4.3. Suppose the network has a node j such that each unit

passing through the network visits j at most once. Also, assume that

0(n) = 0 (n. )4(nk:k x j), and let J = {j}. Then the departure processes
k

N N. N. are independent Poisson processes as in Theorem 4.2.

Now, suppose that each node of the network cali be visited at most once by
I

each unit and 0(n) = 0 1 (n )I m(nm). Then each process N jk is (w Xjk

some of these processes nriy be dependent. Consider the arrival processes

to a fixed node k. Let J denote the set of all nodes j that can never be

reached from k. Then. irider the preceding supposition, the arrival

processes Nk, jLJ, are independent Poisson processes as in Theorem -4.2.

Example 4.4. Multivariate Poisson Flows. Suppose .3......J are subsetsII

of 1.-m) and K ... K are subsets of (0,1-.m) (the subsets need

not be disjoint). Consider the process N. = ' N of times at which
1 i j jk

kf K.

units move from some node in J to some node in K.. Suppose the setsi I

J = J U ...UJ and K = KIU . UK , satisfy assumptions Al. A2. A3. or tluxt

they are contained in a Ixtir of such sets. Thor N k' it.1, ke K. are

independent Poisson processes as in Theorem l.2. Consequent ly,

(N ..... N1 ) is a v-dimensional Poisson process with rate a = a ndjk and

kt K

point allocation distribution1

"_-

%a,-
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F({ Y)i ) = a - Y wA
iV l j.k w j xjk

where I C {l .... v}, and the sum is over all j in fn J.. and k in (I K..
if_ iCI ,

The N .N are independent if nl . = * and f) K =i ic
above......................rri lbefrom iie . t

Example 4.5. Networks With Several Types of Units. Consider a network as

above in which each unit carries a label from a finite set .,4 of types arid

the label may change when the unit moves. We represent this network by

the process X(t) = JX .(t): ats4. j=l .. M). ttR. where X .(t) is the
a.]

number of type a units at node j at time t. A typical state of X is

n = (n afsJ.j=l . m). We assume that X is a Markov process with
a.]

transition rates (analogous to (4.1))

(n. n + ebk) = XO.bk "

q(n.n - eaj + ebk) = 41aj.bk O(n - e aj)/4P(n). _.

q(n.n - eaj )  X ajO 4)(n - e aj)/(n). Ii . 1.

Under assumptions as above, the process X has the equilibrium

distribution

',
w(n) = c41(n) 17 waj

aj

The results above hold for this network - one need only use double

indices aj. bk in place of j.k and consider the point processes

Naj bk' aj t J. bk t- K, where J. K sat isfy assumptions Al. A2. A3 with

double indices. For instance, suppose A C s4 is such that a unit with a
.,

label from "AA cn inever carry a labc; from A. Consider lie pointit

processes of times at wich units ('tUiaie labels froin A Io 4\A. TIese

processes are Naj.bk. a~j(. bkCK. where .1 = (aj: at A, j=l . m and

K = (bk: bC,4\A. k=O. m). Clearly .1 satisf'i es AI and K --tisfies Al.,

P2
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Suppose J also satisfies A2. Then the preceding point processes are

independent Poisson processes with respective rates w aj ajbk}, and the

past of these processes is independent of (X J)+.

The preceding results are for networks in which only one unit can

move at a time. In networks with simultaneous movement of units, the

flows among the nodes may be compound Poisson processes. Kook (198S) has

characterized such flows using Theorem 3.2.

5. Further Generalizations

The results in Sections 2 and 3 readily extend to more general

processes. We discussed some of these situations in the remarks above. I

Here are some more generalizations.

Markov Processes With General State Spaces. Suppose that X = {Xt tfR} is %

a pure jump Markov process with a general state space E and associated

a-field 9, and its transition kernel is K(x.B). xE, Bct. That is, the

exponential sojourn time in state x has parameter K(x.E) and the

probability of X jumping from x into B is K(xB)/K(x,E). Then the

results in Sections 2 and 3 hold with the sums replaced by integrals.

For example, a is the Radon-Nikodym derivative

a (x) = J f(dy)K(y.dx)f(y.x)/n(dx).
F "

Functionals Involving Sojourn Times. Suppose X is a Morkov process as in

Section 2 and

N(A) = Y f(X (X t W t )
ttA

where W t is the waititig time in state Xt_ and f:1t x 1 x R+ -# (0. 1). Then %

the results of Section 2 hold for this N with (r. a defined by

vro .. , ?-.'.,% -W -%-. 

%pp.". ppp- ~*.- . v ':. -~ ~ v~.. ~ ~p n ' !-
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CI~x J q(x~y)f(x.y~w)F (dw)
y

a (X) = W(x) lf. r(y)q(y.x)f(y~x.w)F (dw)
0y y

where F x(w) =1-exp(-wq(x)). Similarly, the results of Section 3 hold

for M as a functional of W tas well as of X t' .- One can generalize

further by assuming that X is a semi-Markov process and replacing F xby a

general sojourn time distribution F
x'y
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